Ligand/cluster/support catalytic complexes in heterogeneous ultrananocatalysis: NO oxidation on Ag3/MgO(100).
نویسندگان
چکیده
In the present work we explore via first-principles simulations whether the ligand/cluster/support catalytic complex generated by CO oxidation over silver trimers deposited on the regular MgO(100) surface - i.e. a Ag3/carbonate or Ag3(CO3)/MgO(100) species - can be used as a catalyst in a different reaction: the selective oxidation of NO to NO2 (or NOox). The Ag3(CO3)/MgO(100) complex is first shown to be reasonably stable at room temperature in terms of both disaggregation and sintering, and that it can be generated from Ag3 adsorbed onto an oxygen vacancy defect of the regular MgO(100) surface under oxidation conditions. It is then found that the Ag3(CO3)/MgO(100) species transforms under NOox conditions into an even more complex aggregate, a mixed carbonate/double-nitrite Ag3(CO3)(NO2)2/MgO(100) species, which can then act as an efficient catalyst of NOox. It is noteworthy that under NOox reaction conditions a different ligand/cluster/support catalytic complex is formed with respect to the original COox one. These findings prove the diversity of the catalytic chemistry of subnanometer (or ultranano) metal clusters deposited on oxide substrates, associated with the formation of many different ligand/cluster/support aggregates, the vast amount of combinatorial possibilities thus opening, and the need for computational approaches to perform systematic structural and stoichiometric searches in order to cope with such a multiform diversity.
منابع مشابه
Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition.
Control and tunability of the catalytic oxidation of CO by gold clusters deposited on MgO surfaces grown on molybdenum, Mo(100), to various thicknesses are explored through temperature-programmed reaction measurements on mass-selected 20-atom gold clusters and via first-principles density functional theory calculations. Au(20) was chosen because in the gas phase it is characterized as an extrao...
متن کاملOxidation of Alkenes with tert-Butyl Hydroperoxide Catalyzed by Mn(II), Cu(II) and VO(IV) Schiff Base Complexes Encapsulated in the Zeolite-Y: A Comparative Study
Oxovanadium(IV), manganese(II) and copper(II) complexes of a Schiff base ligand derived from 2,4-dihydroxyacetophenone and 1,2-diaminocyclohexane have been encapsulated in the nanocavity of zeolite-Y by flexible ligand method and characterized by metal analysis, IR spectroscopic studies and X-ray diffraction patterns. The encapsulated complexes abbreviated here as CuL-Y, MnL-Y and VOL-Y catalyz...
متن کاملPredicted oxidation of CO catalyzed by Au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface.
Recently there has been a surge in research pertaining to the physical and chemical properties of gold nanoclusters. Unlike supported particles of larger sizes, or extended solid surfaces1,2 small metal clusters adsorbed on support materials were found to exhibit unique properties that originate from the highly reduced dimensions of the individual metal aggregates.3-8 In particular we note here...
متن کاملFundamental aspects of catalysis on supported metal clusters
In this review, we examine the role of oxide support defects, cluster size-dependence, cluster structural fluxionality, and impurity doping on the catalytic properties of size-selected metal clusters on surfaces. By combining experimental results from the oxidation of CO on sizeselected gold clusters with ab-initio calculations, a detailed picture emerges of the electronic and structural dynami...
متن کاملWater-enhanced catalysis of CO oxidation on free and supported gold nanoclusters.
The enhancement by water molecules of the catalytic activity of gas-phase and supported gold nanoclusters toward CO oxidation is investigated with first-principles calculations. Coadsorption of H(2)O and O(2) leads to formation of a complex well bound to the gold cluster, even on a defect-free MgO(100) support. Formation of the complex involves partial proton sharing between the adsorbates, tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 48 شماره
صفحات -
تاریخ انتشار 2014